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SUMMARY
Glioblastoma (GBM)-derived tumorigenic stem-like cells (GSCs)may play a key role in therapy resistance. Previously, we reported that the

mitotic kinase MELK binds and phosphorylates the oncogenic transcription factor FOXM1 in GSCs. Here, we demonstrate that the cat-

alytic subunit of Polycomb repressive complex 2, EZH2, is targeted by the MELK-FOXM1 complex, which in turn promotes resistance to

radiation in GSCs. Clinically, EZH2 and MELK are coexpressed in GBM and significantly induced in postirradiation recurrent tumors

whose expression is inversely correlated with patient prognosis. Through a gain-and loss-of-function study, we show that MELK or

FOXM1 contributes to GSC radioresistance by regulation of EZH2. We further demonstrate that the MELK-EZH2 axis is evolutionarily

conserved inCaenorhabditis elegans. Collectively, these data suggest that theMELK-FOXM1-EZH2 signaling axis is essential for GSC radio-

resistance and therefore raise the possibility that MELK-FOXM1-driven EZH2 signaling can serve as a therapeutic target in irradiation-

resistant GBM tumors.
INTRODUCTION

Glioblastoma (GBM) is the most common primary malig-

nant brain tumor and the median survival of patients is

less than 2 years (Brennan et al., 2013). The current stan-

dard of therapy involves maximal surgical resection fol-

lowed by radiotherapy and chemotherapy. However, this

treatment strategy fails to eliminate a subset of tumor cells

that escape from therapeutic insult and result in tumor

recurrence, leading to reduced survival in these patients.

A GBM tumor is composed of heterogeneous tumor cell

populations that include tumor cells with stem cell proper-

ties, termed glioma stem-like cells (GSCs) (Hemmati et al.,

2003; Singh et al., 2004). Accumulating evidence indicates

that GSCs contribute to radioresistance and subsequent tu-

mor cell repopulation, resulting in recurrent tumors (Bao

et al., 2006). Therefore, it is critical to elucidate the molec-

ular mechanisms underlying the radioresistance of GSCs.

Maternal embryonic leucine-zipper kinase (MELK) is a

serine/threonine kinase and is abundantly expressed in

GBM and various other cancers (Gu et al., 2013; Joshi

et al., 2013; Minata et al., 2014; Nakano et al., 2008,

2011). We previously reported that MELK is highly ex-

pressed in GSCs and its mRNA expression is inversely

correlated with the survival of GBM patients (Gu et al.,

2013; Nakano et al., 2008). In addition, short hairpin

RNA (shRNA)-mediated MELK elimination induces GSC
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apoptosis with less inhibitory effects on normal neural pro-

genitor cells (NPCs) (Nakano et al., 2005). Mechanistically,

MELK associates with two oncogenic transcription factors

(c-JUN and FOXM1) inGSCs, but not their normal counter-

parts, which explains at least in part the cancer-specific,

survival-promoting function of MELK (Gu et al., 2013;

Joshi et al., 2013). Nonetheless, the pathophysiological

roles of MELK in GSC radioresistance remain elusive.

Polycomb group (PcG) proteins are important epigenetic

regulators of embryonic development and the cell fate de-

cision (Aloia et al., 2013). PcG proteins play a crucial role

in mediating global transcriptional repression as two large

protein assemblies termed Polycomb repressive complex 1

(PRC1) and PRC2 (Aloia et al., 2013; Margueron and Rein-

berg, 2011). The core components of PRC2 include EZH2

(enhancer of Zeste homolog 2), Suz12 (suppressor of Zeste

12), and EED (embryonic ectoderm development). In

particular, EZH2 functions as a lysine methyltransferase,

and EZH2-containing PRC2 catalyzes trimethylation of his-

tone 3 at lysine 27 (H3K27me3) (Margueron and Reinberg,

2011). In a wide range of cancers, including GBM, elevated

expression of EZH2 is well recognized and its expression is

strongly linked to tumor malignancy and invasiveness

(Kim et al., 2013; Radulovi�c et al., 2013). Recent studies,

including ours (Kim et al., 2013; Lee et al., 2008), suggested

that EZH2 plays a critical role in GSC maintenance and

GBM propagation similar to the function of MELK in
uthors
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GSCs. These studies prompted us to speculate that MELK

and EZH2 may be involved in the same signaling pathway

in GSCs. In this study, we tested the hypothesis that

MELK is an upstream regulator of EZH2 signaling to pro-

mote GSC survival and resistance to radiation therapy on

GBM tumors and GSCs.
RESULTS

MELK and EZH2 Are Colocalized in GBM Cells and

Upregulated after Radiation Treatment

To investigate whether MELK and EZH2 could potentially

interact, we first performed immunofluorescence and

examined their localization. As shown in Figure 1A,

MELK+ cells exhibited high immunoreactivity to EZH2

and the two proteins colocalized. A strong correlation be-

tween MELK and EZH2 protein expression in GBM tumors

was also observed in tissue microarray (n = 76) patient

samples and western blot analyses (n = 17) (Figure 1B

and Figure S1A). At the mRNA level, a statistically signifi-

cant correlation between MELK and EZH2 expression

was found in high-grade gliomas (HGGs) (Figure 1C). A

strong correlation between MELK and EZH2 was also

observed when they were examined in three glioma

data sets (Freije et al., 2004; Sun et al., 2006; Verhaak

et al., 2010; https://tcga-data.nci.nih.gov/docs/publications/

gbm_exp/) (Figure S1B). Intriguingly, when expression of

MELK and EZH2 was compared between newly diagnosed,

untreated GBM tumors and recurrent GBM tumors after

failed radiation and chemotherapy, both of these proteins

were markedly upregulated in recurrent tumors (Mao

et al., 2013; Phillips et al., 2006; http://www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?acc=GSE4271) (Figures 1D and

S1C). When GBM tumors were divided into two groups

based on patient survival time after diagnosis, both

MELK and EZH2 were considerably elevated in patients

with a worse prognosis (Figure 1E). To corroborate these re-

sults with the immunohistochemical findings in recurrent

GBM tumors, we irradiated three glioma sphere samples

(GBM83, GBM1123, and GBM528) (Mao et al., 2013).

We observed a substantial increase in both the mRNA

expression and protein levels of MELK and EZH2 in vitro

(Figures 1F, 1G, and S1D). Interestingly, postirradiation

(post-IR) upregulation of MELK and EZH2 was also

observed in nontumorigenic differentiated glioma sphere

samples (GBM83 and GBM1123) (Figure S2). In addition,

GSC-derived xenograft tumors in mice showed an eleva-

tion of these two proteins after IR treatment in vivo (Fig-

ure 1H). Collectively, MELK and EZH2 are colocalized in

a subset of GBM tumor cells, and both the mRNA and pro-

tein expressions of these genes are upregulated in GBM

tumors and GSCs after IR.
Stem Cell
MELK-Mediated EZH2 Signaling Is Required for GSC

Radioresistance

In a recent study (Gu et al., 2013), we demonstrated that

MELK downregulation induces a loss of the stem cell

phenotype with subsequent tumor cell differentiation

and reduced clonogenicity and tumorigenicity in GBM

cells. Given the IR-induced substantial upregulation of

MELK in GBM spheres, we postulated that MELK may pro-

tect against IR-induced GSC death. To test this possibility,

we combined IR treatment with MELK overexpression,

followed by fluorescence-activated cell sorting (FACS)

analysis for cellular apoptosis in GBM83 and GSC23

spheres (Bhat et al., 2013; Mao et al., 2013) using Annexin

V and propidium iodide. As expected, MELK overex-

pression partially restored IR-induced apoptotic popula-

tions (Figure 2A). On the other hand, MELK knockdown

by shRNA resulted in an increased number of apoptotic

cells (Figure S3). Interestingly, when these GBM spheres

were pretreated with an EZH2 inhibitor, GSK126, rescue

of GBM sphere apoptosis mediated by MELK overex-

pression was almost completely attenuated (Figure 2A),

indicating a possible MELK-mediated EZH2 signaling axis

in GSC survival after IR-induced cellular damage, at least

in vitro.

Next, we assessed the effect of combining MELK

silencing with IR treatment for GBM sphere-derived mouse

tumors in vivo. For this experiment, we used luciferase-en-

gineered GSC23 spheres (Bhat et al., 2013). After shMELK

infection, dissociated GSC23 spheres were xenografted

into mouse brains and treated with fractionated doses of

IR (4 3 2.5 Gy) (Figure 2B). Tumor growth was then fol-

lowed by bioluminescence imaging. Unlike the tumors in

controlmicewith nontarget shRNA, GSC23 sphere-derived

tumors treated with MELK knockdown followed by IR dis-

played substantially reduced sizes at day 42 after xenograft-

ing. Subsequently, prolonged survival of tumor-bearing

mice by IR was strongly enhanced by MELK silencing in

GSC23 spheres (average prolonged survival of 13 days in

the shNT [control] group versus 27 days in the shMELK

group; Figure 2C). Taken together, these data suggest that

post-IR MELK upregulation promotes tumorigenesis and

propagation in vivo.

MELK and EZH2 Have Evolutionarily Conserved

Functions in Radioprotection

MELK and EZH2 are highly conserved in both mamma-

lian and nonmammalian multicellular species. Therefore,

we asked whether the MELK and EZH2 homologs found

in the nematode Caenorhabditis elegans also function in

IR-induced DNA damage responses. The C. elegans germ-

line is an established model for studying DNA damage

response mechanisms as well as stem cell proliferation

and survival in vivo (Garvin et al., 1998). The adult
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Figure 1. MELK and EZH2 Are Colocalized in GBM Cells and Upregulated after Radiation Treatment
(A) Immunostaining for EZH2 (green) and MELK (red) in GBM tumors. Nuclei were stained with Hoechst (blue). Scale bar represents 25 mm.
(B) Correlation of MELK and EZH2 protein expression by microarray analysis of HGGs (n = 76).
(C) Correlation of MELK and EZH2 mRNA expression by microarray analysis of HGGs (n = 76).
(D) Immunohistochemistry for MELK and EZH2 in newly diagnosed (ND, n = 65) or recurrent (Rec, n = 41) tumors, with corresponding
quantification of cells (%) immunoreactive against each protein. Bottom two panels: quantification of MELK+ and EZH2+ cells in ND and
Rec tumors analyzed with ImageJ software. Scale bar represents 50 mm. Asterisk (*) indicates statistical significance by Student’s two-
tailed t test; *p < 0.05. Arrow indicates postradiation vasculosclerosis.
(E) MELK and EZH2mRNA expression in patients with good (>209 weeks survival, n = 19) versus poor (<52 weeks survival, n = 17) prognosis
in the Phillips et al. (2006) data set. Asterisk (*) indicates statistical significance by Student’s two-tailed t test; *p < 0.05.
(F) Relative mRNA expression levels (normalized to GAPDH) of MELK, FOXM1, and EZH2 in GBM83 glioma spheres at 24 and 48 hr after 6 Gy
radiation treatment. Data are represented as means ± SD of triplicate experiments.

(legend continued on next page)
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Figure 2. MELK-Mediated EZH2 Signaling Is Required for GSC Radioresistance
(A) Flow-cytometric analysis of GBM spheres for Annexin V and propidium iodide. Left panel: nonirradiated, EGFP-overexpressing control.
Left middle panel: irradiated, EGFP-overexpressing control. Right middle panel: irradiated, MELK-overexpressing GSCs. Right panel:
irradiated, MELK-overexpressing GSCs treated with the EZH2 inhibitor GSK126.
(B) Bioluminescence imaging (left panel) and average radiance (right panel) of tumor growth after infection with shNT (nontarget control,
n = 5) or shMELK (n = 5), followed by treatment with or without fractionated doses of radiation (4 3 2.5 Gy). Error bar indicates ± SEM;
p values were calculated by Student’s two-tailed t test.
(C) Kaplan-Meier survival curves of tumor-burden mice with the indicated treatments as shown in (B).
See also Figure S3.
hermaphrodite germline consists of two symmetrical

U-shaped tubular structures in which a population of

proliferating mitotic cells creates a stem cell niche at the

distal end (Figure 3A). The mitotic cells migrate proxi-

mally from the distal end, transition into meiosis and
(G) Western blot analysis of EZH2 and MELK in GBM83 and GBM1123 gli
values below the blots indicate the relative expression levels of EZH2
(H) Western blot analysis of EZH2 and MELK in GSC-derived tumors a
See also Figures S1 and S2.

Stem Cell
progress through the stages of prophase I, and eventually

form oocytes at the proximal end of the tube. Under

physiological conditions, approximately half of the

germ cells undergo apoptosis, which is detectable in late

pachytene and early diplotene.
oma spheres at 24, 48, and 72 hr after 6 Gy radiation treatment. The
and MELK protein in comparison with GAPDH.

t 0, 3, and 24 hr after in vivo IR.
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Figure 3. MELK/EZH2 Functions in Radioprotection Are Evolutionarily Conserved
(A) Schematic of C. elegans germline migration and development. The mitotic region is located at the distal end. Meiosis I begins at the
transition zone (TZ) and as the nuclei progress proximally, they enter pachytene, diplotene, and diakinesis. Oocytes mature in diakinesis
before being fertilized by sperm and becoming embryos.
(B) Quantification of mitotic cells in wild-type (N2) or pig-1 mutant. Two independent experiments were used for the quantification. Data
are represented as means ± SD; ***p < 0.001. Representative images of the mitotic region stained with DAPI are shown on the left.
Arrowhead indicates distal tip.
(C) Proportion of AO+ cells in wild-type (N2), pig-1, or mes-2 mutants with or without treatment with 20 Gy IR. Young adult worms were
treated with IR, rescued overnight, and then stained with AO. At least 15 gonads were counted for each strain and condition. The mes-2
(bn11) strain is either homozygous or heterozygous for the mes-2 allele. Two independent experiments were used for the quantification.
Representative images of AO-stained nuclei in the late pachytene/early diplotene region, where apoptosis occurs, are shown. Arrowheads
indicate AO-stained nuclei.
(D) Percent embryonic lethality in wild-type (N2), pig-1, or mes-2 mutants after treatment with 0, 60, or 120 Gy radiation. Synchronized
young adult worms were treated with IR and rescued overnight, and eggs were collected from at least 15 worms for 4–6 hr. The average of at
least three experiments is shown. Data are represented as means ± SD; nsp > 0.05, *p < 0.05, **p < 0.01.
(E) Relative pig-1 and mes-2 mRNA expression after IR, normalized to untreated wild-type worms. Total RNA was extracted 4 hr after young
adult worms were treated with 120 Gy IR. The graph is an average of at least three experiments performed on three separate days.
(F) Percent embryonic lethality in wild-type N2, pig-1, or mes-2 mutant lines with or without pig-1 RNAi knockdown followed by IR.
Synchronized L1 larvae were subjected to RNAi with pig-1 (RNAi) or control (RNAi) and treated with IR (60 Gy) as young adults. They were
then rescued overnight and eggs were collected from at least 15 worms for 4–6 hr. The graph is an average of at least three experiments
performed on three separate days, except for mes-2 (bn11); control (RNAi), which was repeated two times. Data are represented as
means ± SD; nsp > 0.05, *p < 0.05, **p < 0.01.
(G) Relative mes-2 mRNA expression in N2 or pig-1(gm344) mutant. Data represent the mean ± SD; *p < 0.05; p values were calculated by
Student’s two-tailed t test. The graph is an average of at least three experiments performed on three separate days.
See also Figure S4.
The nematode EZH2homolog,MES-2, has an established

role in the germline (Garvin et al., 1998; Holdeman et al.,

1998), but the role of the MELK homolog, PIG-1, in germ

cells is unknown. The presence of pig-1 transcripts in

the germline, as revealed by in situ hybridization (NEXT
230 Stem Cell Reports j Vol. 4 j 226–238 j February 10, 2015 j ª2015 The A
database, http://nematode.lab.nig.ac.jp/) and quantitative

RT-PCR (qRT-PCR) analysis (Figure S4), suggests that pig-1 is

expressed in the germline. Therefore, we utilized a mutant

strain containing the putative null allele gm344, which is a

524 bp deletion of the promoter region through part of the
uthors
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second exon, to determine whether pig-1 also has a func-

tional role in germ cells. DAPI staining of pig-1(gm344)

mutant germlines revealed a significant reduction in the

number of proliferating mitotic cells compared with age-

matched wild-type (N2) germlines (Figure 3B). pig-1 also

appears to negatively regulate germ cell apoptosis, as acri-

dine orange (AO) staining showed that pig-1(gm344) ani-

mals had a modest but consistent increase in apoptosis

compared with N2 animals (Figure 3C, compare the first

and third bars). These data suggest that pig-1 has conserved

functions in cell proliferation and apoptosis (Gu et al.,

2013; Joshi et al., 2013; Nakano et al., 2005, 2008, 2011).

When treated with IR, C. elegans germlines are known to

activate protective mechanisms, including mitotic cell-cy-

cle arrest, repair, and apoptosis. Therefore, we investigated

the effect of IR on the survival of embryos from animals

with genetic mutations in pig-1 or mes-2. Young adult

worms containing mature germlines were treated with

varying doses of IR and the numbers of hatched and un-

hatched progenywere counted to determine the rate of em-

bryonic lethality. Both pig-1(gm344) and mes-2(bn11)

mutant animals showed a dose-dependent increase in

embryonic lethality compared with wild-type control

(N2) animals (Figure 3D). Apoptosis was also significantly

higher in IR-treated pig-1(gm344) and mes-2(bn11) animals

compared with IR-treated N2 animals (Figure 3C). Similar

to what was observed for MELK, pig-1 transcript levels

increased after IR exposure (Figure 3E). These results indi-

cate that loss of either pig-1 ormes-2 leads to a compromised

response to IR exposure, resulting in increased germ cell

apoptosis as well as higher rates of embryonic lethality.

Next, to determine whether pig-1 andmes-2 act in a com-

monpathway or two parallel pathways, we investigated the

genetic interactions between these genes using RNAi. A

reduction of pig-1 expression by RNAi resulted in hypersen-

sitivity to IR to a degree similar to that observed in the

pig-1(gm344) mutant (compare the second and third bars

in Figure 3F), confirming that the IR-induced embryonic

lethality observed in this mutant is due to the loss of

pig-1. Downregulation of pig-1 in both the N2 and mes-

2(bn11) genetic backgrounds resulted in a similar percent-

age of embryonic lethality, suggesting that these two genes

act in the same pathway (Figure 3F). In agreement with

this, the level of mes-2 transcripts, as determined by qRT-

PCR, was decreased in pig-1 mutant worms in comparison

with N2 (Figure 3G). Together, these data indicate that the

biological functions and the relationship of MELK and

EZH2 are evolutionarily conserved.

EZH2 Is Transcriptionally Regulated byMELK in GBM

Spheres

We then sought to determine howMELK is associated with

EZH2 signaling in GSCs. When MELK was silenced in
Stem Cell
GBM83 spheres by shRNA, both themRNA and protein ex-

pressions of EZH2 were significantly decreased (Figures 4A

and 4B). However, mRNA expression was restored when

EZH2 was exogenously expressed in these MELK-silenced

cells (Figure 4A). We performed a luciferase assay to assess

the change in EZH2 promoter activity due to MELK over-

expression in GBM83 spheres. Overexpression of MELK

(coding region) increased EZH2 promoter activity, and

in turn this increasewas largely attenuated by either shRNA

targeting the 30 UTR of MELK (Figure 4C) or pharmacolog-

ical treatment with Compound 1 (C1, a MELK inhibitor)

(Figure 4D; Minata et al., 2014). Consistent with the

change in EZH2 mRNA expression and its promoter activ-

ity by MELK, flow cytometry with EZH2 antibody demon-

strated that EZH2 protein expression was decreased when

GBM83 spheres were passaged from serum-free neuro-

sphere (NS) medium to prodifferentiation conditions

(DC) (Figure 4E). This change in EZH2 expression was

largely, but not completely, restored by MELK overexpres-

sion, whereas pretreatment with GSK126 (an EZH2 inhibi-

tor) did not result in the same effect (Figure 4E). In turn,

shRNA-mediated MELK silencing alone was sufficient to

decreased EZH2 expression in GBM83 spheres, which was

recovered by combined EZH2 overexpression. Collectively,

these data suggest that EZH2 is transcriptionally regulated

by MELK in GSCs.

EZH2 Is a Direct Target of the MELK/FOXM1 Complex

in GBM Spheres

Since MELK is a protein kinase without DNA-binding

domains, an intermediate transcription factor may be

required to directly regulate the expression level of EZH2

transcripts. Therefore, we aimed to identify the direct regu-

latory molecule for EZH2 transcriptional activity in GSCs.

Our recent studies identified novel cancer-specific sub-

strates for MELK protein, including the Forkhead transcrip-

tion factor FOXM1 (Joshi et al., 2013). Similar to what was

observed for MELK and EZH2 (Figure 1C), the expression

profiles of FOXM1 in GBM tumors exhibited a statistically

significant correlation with those of EZH2 (Figure 5A).

The statistically significant correlation of FOXM1 and

EZH2 expression in glioma tumors was also observed in

other three data sets (Freije et al., 2004; Sun et al., 2006; Ver-

haak et al., 2010; https://tcga-data.nci.nih.gov/docs/

publications/gbm_exp/) (Figure S5). In addition, FOXM1

was significantly elevated in GBM patients with a worse

prognosis (Figure 5B). Therefore, we hypothesized that

FOXM1 may mediate the MELK-EZH2 signaling axis

in GSCs. shRNA-mediated FOXM1 knockdown decreased

EZH2 mRNA expression in GBM83 cells, which was

restored by EZH2 exogenous expression (Figure 5C).

In vitro luciferase reporter assay demonstrated that forced

expression of FOXM1 increased EZH2 promoter activity
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Figure 4. EZH2 Is Transcriptionally Regulated by MELK in GBM Spheres
(A) Heatmap of MELK and EZH2 expression in GBM83 spheres after treatment with shNT, shMELK, or shMELK plus EZH2 overexpression.
(B) Western blot for EZH2 in shMELK-infected GBM83 spheres. shNT was the control for MELK knockdown. GAPDH was the loading control.
(C) Relative chemiluminescence of luciferase driven by the EZH2 promoter after infection of GBM spheres with GFP control, MELK over-
expression vector, or MELK overexpression with shMELK. Data represent the mean ± SD of three independent experiments and statistical
significance was evaluated by one-way ANOVA followed by Bonferroni post hoc tests. *p < 0.05; **p < 0.01.
(D) Relative chemiluminescence of EZH2 promoter activity in GBM spheres after infection with GFP control or MELK overexpression vector
and increasing doses of the MELK inhibitor C1. Data represent the mean ± SD of three independent experiments and statistical significance
was evaluated by one-way ANOVA followed by Bonferroni post hoc tests. *p < 0.05; **p < 0.01.
(E) Flow-cytometric analysis of GBM83 spheres in neurosphere (NS) or differentiation (DC) medium. Analysis of spheres in DC medium also
included samples treated with MELK overexpression or MELK overexpression plus GSK126 (left panel). Spheres cultured in NS medium were
also treated with shMELK or shMELK plus EZH2 overexpression vector.
in GBM83 spheres (Figure 5D). Of note, compared with

MELK (Figure 4), FOXM1 had a 3-fold greater impact on

EZH2 promoter activity. MELK silencing by shRNA sub-

stantially diminished FOXM1-driven EZH2 transcriptional

activity, whereas FOXM1 silencing had only a marginal

effect on MELK-driven EZH2 transcriptional activity in

GBM83 spheres. This result indicates that the action of

FOXM1 largely depends on MELK, but not vice versa, for

activation of the EZH2 promoter in GSCs. The FOXM1-

dependent transcriptional activity of EZH2 was also

confirmed by cotreatment with FOXM1 overexpression

and the FOXM1 inhibitor siomycin A (Figure 5E). At the

molecular level, both the MELK/FOXM1 protein complex

and the kinase-dependent phosphorylation of FOXM1

were essential for FOXM1-driven transcriptional activation

of EZH2, because MELK mutant protein lacking FOXM1

binding (D150A) and FOXM1 mutant protein lacking
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phosphorylation (596/678), but not transactivation (715/

724) function, masked the transactivation of EZH2 tran-

scripts by MELK and FOXM1 (Figures 5F and 5G). These

results indicate that binding ofMELK to FOXM1 and subse-

quent phosphorylation of FOXM1 are essential for the

transcriptional activation of EZH2 in GSCs. We further

confirmed that FOXM1 occupies the genomic region that

regulates the EZH2 transcripts in GSCs by chromatin

immunoprecipitation (ChIP)-PCR (Figure 5H). In turn,

when these cells were pretreated with either MELK inhibi-

tor (C1) or FOXM1 inhibitor (siomycin A) (Gartel, 2013),

the occupancy of FOXM1 in the EZH2 promoter was

largely abolished, suggesting that the MELK-dependent

FOXM1 signals to drive EZH2 transcripts in GSCs (Fig-

ure 5I). To validate the MELK/FOXM1-mediated EZH2

signaling axis in GSCs, we performed a transcriptome

microarray followed by qRT-PCR validation with GBM83
uthors



cells. As expected, all of the known EZH2 downstream

target genes, except for RUNX3, were strongly suppressed

by both MELK shRNA and FOXM1 shRNA, and the com-

bined expression of EZH2 with knockdown of either

MELK or FOXM1 restored their expression back to or nearly

to the basal levels (Figure 5J). Consistent with these mRNA

expression data, FACS analysis demonstrated that dimin-

ished EZH2 expression in differentiated GBM83 spheres

was partially restored by FOXM1 overexpression alone,

but not when combined with GSK126 (Figure 5K). In

turn, overexpression of both MELK and FOXM1 in these

cells completely restored EZH2 expression only in the

absence of GSK126, suggesting that in these GSC cultures,

MELK and FOXM1 are the predominant regulators of EZH2

transcriptional expression. Similarly to MELK knockdown,

FOXM1 knockdown significantly reduced EZH2 protein

levels, and when FOXM1 knockdown was combined with

exogenous expression of EZH2, the decrease in EZH2 was

restored to near basal levels. Lastly, we investigated

whether FOXM1 rescues IR-induced GSC apoptosis simi-

larly to MELK, and whether GSK126 treatment could also

mask this phenotype. As shown in Figure 5L, IR-induced

apoptosis was largely rescued by FOXM1 overexpression,

and cotreatment with GSK126 prevented apoptosis in

these stem cell populations.
DISCUSSION

In this study, we report a number of findings: (1) in GBM

tumors, MELK and EZH2 proteins are mostly colocalized

in a subset of tumor cells; (2) the fraction of MELK+ and

EZH2+ cells preferentially increases in postradio-/chemo-

therapy recurrent GBM tumors compared with de novo

untreated tumors; (3) radioprotection of stem cells by the

MELK-EZH2 axis is evolutionarily conserved between

C. elegans and human; (4) in humanGBM, GSC radioresist-

ance depends largely on MELK-mediated EZH2 signaling

in vitro, and MELK knockdown using shRNA radiosensi-

tizes in vivo tumors; (5) EZH2 is a direct target of the

oncogenic transcription factor FOXM1 in GSCs; (6) signals

derived from the MELK/FOXM1 protein complex are both

sufficient and required to drive the transcriptional activity

of EZH2 in GSCs; and (7) clinically, MELK, FOXM1, and

EZH2 are strongly linked to GBM patient prognosis.

Our data provide evidence that the oncogenic protein

complex MELK/FOXM1 is a crucial transcriptional regu-

lator of EZH2. EZH2, a lysine methyltransferase of

PRC2, mediates the transcriptional repression of prodiffer-

entiation genes in neoplastic stem cells (Margueron and

Reinberg, 2011; Richly et al., 2011; Sparmann and van Lo-

huizen, 2006).While the oncogenic role of EZH2 in various

cancers as a transcriptional silencer is well established, it
Stem Cell
remains elusive how the EZH2 gene is transcriptionally

regulated in GSCs and whether EZH2 upregulation is asso-

ciated with radioresistance of cancers. Recently, a few tran-

scription activators, including E2F1, Sox4, and miR-101,

were implicated in the transcriptional control of EZH2

(Smits et al., 2010; Tiwari et al., 2013). However, whether

these factors play a role in GBM and GSCs requires further

investigation.

UsingC. elegans as amodel system, we also demonstrated

that the functional relationship between MELK and EZH2

is evolutionarily conserved. While the role of MES-2

(ortholog of EZH2 in C. elegans) in germ cells has been pre-

viously described (Garvin et al., 1998; Holdeman et al.,

1998), we show that the pig-1 (ortholog of MELK in

C. elegans) gene has a functional role in the C. elegans germ-

line.We found that the loss of pig-1 resulted in a significant

decrease in the number of proliferatingmitotic cells, as well

as an increase in apoptosis under physiological conditions.

Previously, pig-1 was implicated in the regulation of the

developmental cell death pathway in young larvae and em-

bryos (Chien et al., 2013; Cordes et al., 2006). In this

context, pig-1 supports apoptosis in somatic cells, suggest-

ing that pig-1 may have opposite roles in somatic versus

germ cells or in cells with diverse differentiation states, as

also suggested by several studies in mammalian cells (Joshi

et al., 2013; Nakano et al., 2005). Furthermore, pig-1 and

mes-2 mutant animals showed an increase in both the

rate of apoptosis and embryonic lethality after IR in

comparison with wild-type worms. A genetic interaction

analysis suggested that pig-1 and mes-2 act through a com-

mon pathway and that mes-2 mRNA levels are decreased

in pig-1 mutant animals. Although the lack of a clear

FOXM1 homolog in C. elegans prevented further analysis

ofMELK/EZH2 signaling in the nematode, the data support

the results obtained withMELK and EZH2 in human GSCs.

An important therapeutic implication of the present data

is derived from the impact of MELK knockdown when

combined with IR for GSC-derived mouse xenografted tu-

mors. For decades, IR has been a mainstay of treatment

for GBM patients; however, the exact molecular mecha-

nisms that drive GBM radioresistance remain unclear.

Our data indicate that after IR, GSCs may become more

dependent on MELK-driven FOXM1/EZH2 signaling,

raising the possibility of novel therapeutic approaches for

GBM. EZH2 and FOXM1 are both oncogenic proteins

with substantially elevated expression in various cancers,

including GBM. Nonetheless, it is extremely challenging

to develop molecularly targeted therapeutics for transcrip-

tion factors. There are no established EZH2 targeting

therapies for any cancer, but a phase I clinical trial

(NCT02082977) using an EZH2 inhibitor, GSK2816126

(an analog of GSK126 used in this study), for relapsed/re-

fractory diffuse large B cell and transformed follicular
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Figure 5. EZH2 Is a Direct Target of the MELK/FOXM1 Complex in GBM Spheres
(A) Correlation of FOXM1 and EZH2 mRNA expression by microarray analysis of HGGs (n = 76).
(B) FOXM1 mRNA expression in patients with good (>209 weeks survival, n = 19) versus poor (<52 weeks survival, n = 17) prognosis in the
Phillips et al. (2006) data set. Asterisk (*) indicates statistical significance by Student’s two-tailed t test. *p < 0.05.
(C) Heatmap of MELK, EZH2, and FOXM1 expression in GSCs after treatment with shNT control, shFOXM1, or shFOXM1 plus EZH2 over-
expression.
(D) Relative chemiluminescence of luciferase driven by the EZH2 promoter after infection of GBM spheres with GFP control, MELK
overexpression vector, or FOXM1 overexpression vector. MELK overexpression treatment was also combined with shFOXM1, and FOXM1
overexpression treatment was also combined with shMELK or shFOXM1. Data represent the mean ± SD from three independent experiments
and statistical significance was evaluated by one-way ANOVA followed by Bonferroni post hoc tests. GFP versus MELK, MELK+shFOXM1, or
FOXM1: ***p < 0.001; FOXM1 versus FOXM1+shFOXM1, FOXM1+shMELK#1, or FOXM1+shMELK#2: ###p < 0.001.
(E) Relative chemiluminescence of EZH2 promoter activity in GBM spheres after infection with GFP control or FOXM1 overexpression vector
and increasing doses of the FOXM1 inhibitor siomycin A (0.05–0.5 mM). Data represent the mean ± SD of triplicate experiments.
(F) Relative chemiluminescence of EZH2 promoter activity in GBM spheres after infection with GFP control or combinations of MELK wild-
type (WT) overexpression, FOXM1 binding-deficient MELK (MELK D150A), or FOXM1 overexpression. Data represent the mean ± SD of
triplicate experiments.
(G) Relative chemiluminescence of EZH2 promoter activity in GBM spheres after infection with GFP control or MELK, FOXM1 WT, and FOXM1
mutated overexpression vectors with increasing doses of the MELK inhibitor C1. Data represent the mean ± SD of triplicate experiments.
(H) ChIP for RNA pol II or FOXM1 followed by PCR for the EZH2 promoter. Data represent the mean ± SD of triplicate experiments. A
representative data set from three independent experiments is shown.
(I) ChIP for FOXM1 or IgG control at the EZH2 promoter after pretreatment of spheres with vehicle control, siomycin A, or C1. Data represent
the mean ± SD of triplicate experiments. A representative data set from three independent experiments is shown.
(J) Microarray analysis and qPCR validation of EZH2 targets in GSCs treated with shNT (control), shMELK, shFOXM1, and EZH2 over-
expression. The gene expression levels were validated by real-time RT-PCR. Data represent the mean ± SD from three independent

(legend continued on next page)
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lymphoma is currently ongoing. Our identification of the

protein kinase MELK as a key regulator of FOXM1-driven

EZH2 signaling in preclinical GBM tumors and GSCs may

facilitate the development of MELK-targeted therapies

that can lead to FOXM1/EZH2 deregulation in GBM. In

2013, a phase I clinical trial (NCT01910545) for non-CNS

cancers was started in order to test OTS167, a small-mole-

cule kinase inhibitor with high specificity for MELK.

Recently, we also identified C1 as a kinase inhibitor that

preferentially inhibits MELK (Minata et al., 2014). Given

that MELK knockdown strongly sensitizes GSC-derived

mouse tumors to IR, it is an attractive idea to combine IR

therapy with chemotherapy using a MELK inhibitor (and

possibly an EZH2 inhibitor) for GBM.

Our results suggest several open questions that will

require further investigation. Although evidence suggests

that eradication of cancer stem cells appears to be beneficial

for curing cancers, recent studies also suggest that non-

cancer stem cells acquire a cancer stem cell phenotype

when challenged by stressors such as glucose deprivation

(Flavahan et al., 2013). Thus, eradication of the existing

cancer stem cells may not be sufficient, and instead a

therapeutic combination targeting noncancer stem cells

in addition to cancer stem cells may be mandatory. The

IR-induced increases in MELK and EZH2 may be due to

(1) the preferential eradication of nonstem tumor cells

and subsequent enrichment of GSCs after treatment (i.e.,

selection of a therapy-resistant tumor cell population) or

(2) IR-induced phenotypic changes of the treated GBM

sphere cells, resulting in increasedMELK and subsequently

EZH2 through modulation of stress-induced enzymes

(plasticity of GSCs and non-GSCs). It is also possible that

both explanations are true. Future studies will address

this issue.

Another open question is, which GBM subtypes and

GSC subtypes are dependent on the MELK-FOXM1-EZH2

signaling axis? Thus far, recent genome-wide transcrip-

tome and methylome analyses support the existence of

three to six GBM subtypes (Phillips et al., 2006; Sturm

et al., 2012; Verhaak et al., 2010) and two GSC subtypes

(Bhat et al., 2013; Mao et al., 2013). It is not entirely clear

whether any of the GBM/GSC subtypes are more preferen-

tially dependent on the MELK-FOXM1-EZH2 axis or all
experiments and statistical significance was evaluated by one-way
shMELK, or shFOXM1: **p < 0.01,***p < 0.001; EZH2 versus shMELK+
(K) Flow-cytometric analysis for EZH2 of glioma spheres cultured in ne
in DC medium also included samples treated with FOXM1 overexpre
overexpression with or without GSK126 (middle panel). Spheres cultu
EZH2 overexpression vector (right panel).
(L) Flow-cytometric analysis of irradiated GBM spheres for Annexin V
EGFP control (left panel), FOXM1 overexpression vector (middle pane
See also Figure S5.
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subtypes rely equally on this signaling axis. Future studies

will address this question.

In conclusion, in this study, we identified a signaling

pathway for EZH2 upregulation inGSCs that plays a critical

role in GBM tumor propagation and radioresistance. Iden-

tification of the MELK/FOXM1 protein complex as the

predominant regulator for the EZH2 gene in GSCs high-

lights a possible therapeutic target for the devastating dis-

ease GBM.
EXPERIMENTAL PROCEDURES

Glioma Tumor-Derived Neurospheres
All of the work related to human tissues was performed at The

Ohio State University and MD Anderson Cancer Center under

institutional review board-approved protocols according to NIH

guidelines. Glioma and normal neurospheres were derived from

19 HGG samples, three fetal-brain-derived astrocytes, and neural

progenitors as described previously (Bhat et al., 2013; Gu et al.,

2013; Guvenc et al., 2013; Miyazaki et al., 2012; Nakano et al.,

2011). For the Ohio State University samples, brain tumor resec-

tions were performed by Drs. I. Nakano and E.A. Chiocca (Depart-

ment of Neurological Surgery, The Ohio State University). In

brief, freshly resected glioma tumor samples were dissociated

into single cells using both mechanical (neurospheres were

gently pipetted with P1000 pipet tips four to five times) and enzy-

matic (TrypLE Express; Invitrogen) methods. The dissociated tu-

mor cells were cultured in Dulbecco’s modified Eagle’s medium

(DMEM)/F12 (Invitrogen) supplemented with B27 (1:50), heparin

(5 mg/ml), basic fibroblast growth factor (bFGF; 20 ng/ml), and

epidermal growth factor (EGF; 20 ng/ml). Growth factors (bFGF

and EGF) were added twice a week. For differentiation of GSCs,

neurospheres were cultured in DMEM/F12 supplemented with

10% (vol/vol) fetal bovine serum for 10 days. All of the neuro-

spheres analyzed in this study were cultured for <20 passages

from surgery or xenograft mouse intracranial tumors. In some ex-

periments, various neurospheres were exposed to radiation after

cells were plated at a density of 1 3 106 cells/flask 1 day before

radiation treatment.
Gene Expression Omnibus Profile and TCGA
MELK and FOXM1 expression data (Affymetrix Human Genome

U133A Array) were downloaded from the GDS1815 data set and

analyzed for grade III glioma and GBM. The Cancer Genome Atlas
ANOVA followed by Bonferroni post hoc tests. shNT versus EZH2,
EZH2 or shFOXM1+EZH2: #p < 0.05, ##p < 0.01, ###p < 0.001.
urosphere (NS) or differentiation (DC) medium. Analysis of spheres
ssion with or without GSK126 (left panel), and MELK and FOXM1
red in NS medium were also treated with shFOXM1 or shFOXM1 plus

and propidium iodide. Irradiated spheres were treated with either
l), or FOXM1 overexpression with GSK126 (right panel).
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(TCGA) data are available through the TCGAData Portal at https://

tcga-data.nci.nih.gov/tcga/.

ChIP-PCR Analysis to Determine EZH2 Promoter

Occupancy
Using the Genomatrix program, we searched the consensus bind-

ing site in the human EZH2 promoter and performed ChIP-PCR

using the QIAGENChIP kit according to themanufacturer’s proto-

col. A total of 131 patient-derived GBMs were treated with either

C1 or siomycin A for 1 day and processed for genomic DNA

isolation.

C. elegans Culture and Strains
C. eleganswormswere grownat 20�Connematodegrowthmedium

(NGM) plates seeded with OP50 E. coli bacteria under standard

laboratory conditions (Brenner, 1974) unless otherwise indicated.

The strains used in this study were obtained from the C. elegans

Genetic Center and included N2 Bristol (wild-type), NG4370

zdIs5; pig-1 (gm344) IV, and SS186 mes-2 (bn11), unc-4 (e120)/

mnC1, dpy-10 (e128), unc-52 (e444) II.

RNAi for C. elegans
RNAi experiments were performed using the feeding method

described in (Timmons, 2006). N2 worms were fed HT115 bacteria

strains containing pig-1 RNAi from the Ahringer library (Kamath

et al., 2003) or HT115 bacteria containing the empty L4440

feeding vector as a control. Bacteria were applied to plates con-

taining 1 mM isopropyl b-d-thiogalactoside (Sigma Aldrich) and

50 mg/ml ampicillin (Sigma Aldrich), and induced overnight at

room temperature. Synchronized L1 animals were put on the

plates, grown until young adulthood (20–24 hr after L4), and

then used for embryonic lethality experiments (see below).

The graph in Figure 3E is an average of at least three experiments

performed on three separate days, except for themes-2 (bn11); con-

trol (RNAi) experiment, which was repeated two times.

Embryonic Lethality Assay in C. elegans
Synchronized young adult worms (20–24 hr after L4 stage) were

treated with the indicated amounts of ionizing IR (Faxitron X-ray

machine) and allowed to recover for 24 hr. Thirty worms for

each variable were divided into ten worms/three plates and

allowed to lay eggs for 4–6 hr. After 24–48 hr, hatched and

unhatched progeny were counted with the use of a dissecting mi-

croscope to determine the percentage of embryonic lethality (un-

hatched eggs/total progeny). The experiment was performed in

triplicate on three separate days.

Quantification of Apoptosis in C. elegans
Apoptotic germlines were scored in young adult worms 24 hr

after IR treatment or in age-matched untreated controls using

AO (10 mg/ml; Molecular Probes) staining as described previously

(Craig et al., 2012). In brief, worms were removed from plates

with M9 buffer into a microfuge tube. Then, 200 ml of AO

(5 mL/ml) was added and the tubes were covered in foil and

incubated for 2 hr. The worms were placed on NGM plates with

food and then on slides with agarose pads. AO+ cells were
236 Stem Cell Reports j Vol. 4 j 226–238 j February 10, 2015 j ª2015 The A
counted using the 403 objective on a fluorescence microscope

(Zeiss Imager M2).

Quantification of Mitotic Cells in C. elegans
Synchronized young adult pig-1 andN2worms grown at 25�Cwere

fixedwithmethanol/acetone and stainedwith DAPI (100 ng/ml in

PBST). In brief, the worms were washed from the plates with M9

buffer and incubated in �20�C methanol for 10 min, incubated

in �20�C acetone for 5 min, washed one time in PBST, incubated

for 10 min in DAPI at room temperature, and washed two times

in PBST. Images of germlines were acquired with a 603 objective

on a fluorescence microscope (Zeiss Imager M2) and the mitotic

nuclei of optically bisected germlines were counted with the use

of ImageJ Micromanager software. Two independent experiments

were used for quantification.

The experimental methods used in this work are detailed in the

Supplemental Experimental Procedures.
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